3.1135 \(\int \frac{1}{(a+b x^4)^{3/4}} \, dx\)

Optimal. Leaf size=61 \[ -\frac{\sqrt{b} x^3 \left (\frac{a}{b x^4}+1\right )^{3/4} \text{EllipticF}\left (\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right ),2\right )}{\sqrt{a} \left (a+b x^4\right )^{3/4}} \]

[Out]

-((Sqrt[b]*(1 + a/(b*x^4))^(3/4)*x^3*EllipticF[ArcCot[(Sqrt[b]*x^2)/Sqrt[a]]/2, 2])/(Sqrt[a]*(a + b*x^4)^(3/4)
))

________________________________________________________________________________________

Rubi [A]  time = 0.024496, antiderivative size = 61, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 11, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.364, Rules used = {237, 335, 275, 231} \[ -\frac{\sqrt{b} x^3 \left (\frac{a}{b x^4}+1\right )^{3/4} F\left (\left .\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )\right |2\right )}{\sqrt{a} \left (a+b x^4\right )^{3/4}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^4)^(-3/4),x]

[Out]

-((Sqrt[b]*(1 + a/(b*x^4))^(3/4)*x^3*EllipticF[ArcCot[(Sqrt[b]*x^2)/Sqrt[a]]/2, 2])/(Sqrt[a]*(a + b*x^4)^(3/4)
))

Rule 237

Int[((a_) + (b_.)*(x_)^4)^(-3/4), x_Symbol] :> Dist[(x^3*(1 + a/(b*x^4))^(3/4))/(a + b*x^4)^(3/4), Int[1/(x^3*
(1 + a/(b*x^4))^(3/4)), x], x] /; FreeQ[{a, b}, x]

Rule 335

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 231

Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Simp[(2*EllipticF[(1*ArcTan[Rt[b/a, 2]*x])/2, 2])/(a^(3/4)*Rt[b
/a, 2]), x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{1}{\left (a+b x^4\right )^{3/4}} \, dx &=\frac{\left (\left (1+\frac{a}{b x^4}\right )^{3/4} x^3\right ) \int \frac{1}{\left (1+\frac{a}{b x^4}\right )^{3/4} x^3} \, dx}{\left (a+b x^4\right )^{3/4}}\\ &=-\frac{\left (\left (1+\frac{a}{b x^4}\right )^{3/4} x^3\right ) \operatorname{Subst}\left (\int \frac{x}{\left (1+\frac{a x^4}{b}\right )^{3/4}} \, dx,x,\frac{1}{x}\right )}{\left (a+b x^4\right )^{3/4}}\\ &=-\frac{\left (\left (1+\frac{a}{b x^4}\right )^{3/4} x^3\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1+\frac{a x^2}{b}\right )^{3/4}} \, dx,x,\frac{1}{x^2}\right )}{2 \left (a+b x^4\right )^{3/4}}\\ &=-\frac{\sqrt{b} \left (1+\frac{a}{b x^4}\right )^{3/4} x^3 F\left (\left .\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )\right |2\right )}{\sqrt{a} \left (a+b x^4\right )^{3/4}}\\ \end{align*}

Mathematica [C]  time = 0.006789, size = 46, normalized size = 0.75 \[ \frac{x \left (\frac{b x^4}{a}+1\right )^{3/4} \, _2F_1\left (\frac{1}{4},\frac{3}{4};\frac{5}{4};-\frac{b x^4}{a}\right )}{\left (a+b x^4\right )^{3/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^4)^(-3/4),x]

[Out]

(x*(1 + (b*x^4)/a)^(3/4)*Hypergeometric2F1[1/4, 3/4, 5/4, -((b*x^4)/a)])/(a + b*x^4)^(3/4)

________________________________________________________________________________________

Maple [F]  time = 0.033, size = 0, normalized size = 0. \begin{align*} \int \left ( b{x}^{4}+a \right ) ^{-{\frac{3}{4}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^4+a)^(3/4),x)

[Out]

int(1/(b*x^4+a)^(3/4),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{4} + a\right )}^{\frac{3}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^4+a)^(3/4),x, algorithm="maxima")

[Out]

integrate((b*x^4 + a)^(-3/4), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{{\left (b x^{4} + a\right )}^{\frac{3}{4}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^4+a)^(3/4),x, algorithm="fricas")

[Out]

integral((b*x^4 + a)^(-3/4), x)

________________________________________________________________________________________

Sympy [C]  time = 0.717655, size = 36, normalized size = 0.59 \begin{align*} \frac{x \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{4}, \frac{3}{4} \\ \frac{5}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac{3}{4}} \Gamma \left (\frac{5}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x**4+a)**(3/4),x)

[Out]

x*gamma(1/4)*hyper((1/4, 3/4), (5/4,), b*x**4*exp_polar(I*pi)/a)/(4*a**(3/4)*gamma(5/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{4} + a\right )}^{\frac{3}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^4+a)^(3/4),x, algorithm="giac")

[Out]

integrate((b*x^4 + a)^(-3/4), x)